Search this site
Embedded Files
Vijñāna Parishad of India
  • Home
  • Vijñāna Parishad of India
    • Executive Council
    • Join Vijñāna Parishad of India
    • Life Members
    • Annual Members
    • VPI Annual Conferences
      • 26th Annual Conference - 2025
      • 25th Annual Conference - 2024
      • 24th Annual Conference - 2023
      • Sixth International Conference
      • Fifth International Conference and Golden Jubilee Celebration
      • 23rd Annual Conference - 2021
      • International Conference - 2020
      • International Conference and 22nd Annual Convention
      • 2nd International Conference
      • 21st Annual Conference
      • 20th Annual Conference
      • 19th Annual Conference
      • 18th Annual Conference
      • 17th Annual Conference
      • 16th Annual Conference
      • 15th Annual Conference
        • 15th Annual Conference Photo Gallery
    • Fellows and Awards
      • Best Paper Presentation Award To Young Scientists
    • Donors
  • Jñānābha
    • Jñānābha‎ Online Volumes
    • Volume 54 (No 2-2024)
    • Volume 54 (No 1-2024)
    • Volume 53 (No 2-2023)
    • Volume 53 (No 1-2023)
    • Volume 52 (No 2-2022)
    • Volume 52 (No 1-2022)
    • Volume 51 (No 2-2021)
    • Volume 51 (No 1-2021)
    • Volume 50 (No 2-2020)
    • Volume 50 (No 1-2020)
    • Volume 49 (No2-2019)
    • Volume 49 (No1-2019)
    • Volume 48 (No2-2018)
    • Volume 48 (No1-2018)
    • Special Issue 2018
    • Volume 47 (No2-2017)
    • Volume 47 (No1-2017)
    • Volume 46 (2016)
    • Volume 45 (2015)
    • Volume 44 (2014)
    • Volume 43 (2013)
    • Volume 42 (2012)
    • Volume 41 (2011)
    • Volume 40 (2010)
    • Volume 39 (2009)
    • Volume 38 (2008)
    • Volume 37 (2007)
    • Volume 36 (2006)
    • Volume 35 (2005)
    • Volume 34 (2004)
    • Volume 33 (2003)
    • Volume 31, 32 (2002)
    • Volume 30 (2000)
    • Volume 29 (1999)
    • Volume 28 (1998)
    • Volume 27 (1997)
    • Volume 26 (1996)
    • Volume 25 (1995)
    • Volume 24 (1994)
    • Volume 23 (1993)
    • Volume 22 (1992)
    • Volume 21 (1991)
    • Volume 20 (1990)
    • Volume 19 (1989)
    • Volume 18 (1988)
    • Volume 17 (1987)
    • Volume 16 (1986)
    • Volume 15 (1985)
    • Volume 14 (1984)
    • Volume 13 (1983)
    • Volume 12 (1982)
    • Volume 11 (1981)
    • Volume 9/10 (1980)
    • Volume 8 (1978)
    • Volume 7 (1977)
    • Volume 6 (1976)
    • Volume 5 (1975)
    • Volume 4 (1974)
    • Volume 3 (1973)
    • Volume 2 (1972)
    • Volume 1 (1971)
  • News and Events
  • Contact Us
Vijñāna Parishad of India

Jñānābha‎, Vol. 52(1) (2022), (189-202)

FRACTIONAL CALCULUS OF PRODUCT OF M-SERIES AND I-FUNCTION OF TWO VARIABLES   


By

Dheerandra Shanker Sachan1 , Harsha Jalori2  and Shailesh Jaloree3

1St.Mary’s Postgraduate College, Vidisha-464001, Madhya Pradesh, India 

2Government Shyama Prasad Mukharjee Science and Commerce College, Bhopal-462039, Madhya Pradesh, India 

3Samrat Ashok Technological Institute, Vidisha-464001, Madhya Pradesh, India 

Email:sachan.dheerandra17@gmail.com, jalori.harsha@gmail.com, shailesh_jaloree@rediffmail.com 

(Received: September 30, 2020; In format: June 19, 2021; Revised: August 14, 2021; Accepted: May 19, 2022)  

 

  DOI: https://doi.org/10.58250/Jnanabha.2022.52125


Abstract

The object of this paper is to develop the generalized fractional calculus formulas for the product of generalized M-series and I-function of two variables which is based on generalized fractional integration and differentiation operators of arbitrary complex order involving Appell hypergeometric function F3 as a kernel due to Saigo and Maeda. On account of general nature of the Saigo-Maeda operators, a large number of results involving Saigo and Riemann-Liouville operetors are found as corollaries. Again due to general nature of I-function of two variables and M-series, some special cases also have been considered. 


2020 Mathematical Sciences Classification: 26A33, 33C60, 33C70. 

Keywords and Phrases: : Generalized fractional calculus operators, Generalized M-series, Appell function, Fractional calculus, I-function of two variables, Mellin-Barnes type integrals

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse