Search this site
Embedded Files
Vijñāna Parishad of India
  • Home
  • Vijñāna Parishad of India
    • Executive Council
    • Join Vijñāna Parishad of India
    • Life Members
    • Annual Members
    • VPI Annual Conferences
      • 26th Annual Conference - 2025
      • 25th Annual Conference - 2024
      • 24th Annual Conference - 2023
      • Sixth International Conference
      • Fifth International Conference and Golden Jubilee Celebration
      • 23rd Annual Conference - 2021
      • International Conference - 2020
      • International Conference and 22nd Annual Convention
      • 2nd International Conference
      • 21st Annual Conference
      • 20th Annual Conference
      • 19th Annual Conference
      • 18th Annual Conference
      • 17th Annual Conference
      • 16th Annual Conference
      • 15th Annual Conference
        • 15th Annual Conference Photo Gallery
    • Fellows and Awards
      • Best Paper Presentation Award To Young Scientists
    • Donors
  • Jñānābha
    • Jñānābha‎ Online Volumes
    • Volume 54 (No 2-2024)
    • Volume 54 (No 1-2024)
    • Volume 53 (No 2-2023)
    • Volume 53 (No 1-2023)
    • Volume 52 (No 2-2022)
    • Volume 52 (No 1-2022)
    • Volume 51 (No 2-2021)
    • Volume 51 (No 1-2021)
    • Volume 50 (No 2-2020)
    • Volume 50 (No 1-2020)
    • Volume 49 (No2-2019)
    • Volume 49 (No1-2019)
    • Volume 48 (No2-2018)
    • Volume 48 (No1-2018)
    • Special Issue 2018
    • Volume 47 (No2-2017)
    • Volume 47 (No1-2017)
    • Volume 46 (2016)
    • Volume 45 (2015)
    • Volume 44 (2014)
    • Volume 43 (2013)
    • Volume 42 (2012)
    • Volume 41 (2011)
    • Volume 40 (2010)
    • Volume 39 (2009)
    • Volume 38 (2008)
    • Volume 37 (2007)
    • Volume 36 (2006)
    • Volume 35 (2005)
    • Volume 34 (2004)
    • Volume 33 (2003)
    • Volume 31, 32 (2002)
    • Volume 30 (2000)
    • Volume 29 (1999)
    • Volume 28 (1998)
    • Volume 27 (1997)
    • Volume 26 (1996)
    • Volume 25 (1995)
    • Volume 24 (1994)
    • Volume 23 (1993)
    • Volume 22 (1992)
    • Volume 21 (1991)
    • Volume 20 (1990)
    • Volume 19 (1989)
    • Volume 18 (1988)
    • Volume 17 (1987)
    • Volume 16 (1986)
    • Volume 15 (1985)
    • Volume 14 (1984)
    • Volume 13 (1983)
    • Volume 12 (1982)
    • Volume 11 (1981)
    • Volume 9/10 (1980)
    • Volume 8 (1978)
    • Volume 7 (1977)
    • Volume 6 (1976)
    • Volume 5 (1975)
    • Volume 4 (1974)
    • Volume 3 (1973)
    • Volume 2 (1972)
    • Volume 1 (1971)
  • News and Events
  • Contact Us
Vijñāna Parishad of India

Jñānābha‎, Vol. 54 (1) (2024), (141-149)

TWO CLASSES OF TWO DIMENSIONAL MIXED GEGENBAUER-LEGENDRE POLYNOMIALS TO APPLY IN COMPUTATION OF THE REGION OF CONVERGENCE OF ARBITRARY FUNCTION CONTAINING THEM 


By

R. C. Singh Chandel¹ , Hemant Kumar² and P. K. Vishwakarma³ 

¹Former Head, Department of Mathematics D. V. Postgraduate College Orai, Uttar Pradesh, India285001 

²Department of Mathematics, D. A-V. Postgraduate College Kanpur, Uttar Pradesh, India-208001 

³Department of Mathematics, Atarra Postgraduate College Atarra, Uttar Pradesh, India-210201 

Email: rc chandel@yahoo.com, palhemant2007@rediffmail.com, pkvncc.1965@yahoo.in 

(Received: January 03, 2024; In format: March 24, 2024; Revised: April 11, 2024; Accepted: April 12, 2024) 


DOI: https://doi.org/10.58250/jnanabha.2024.54118



Abstract

In this article we introduce interesting two dimensional formulae of Legendre and Gegenbauer polynomials and then study their analytic and algebraic properties to derive some known and unknown results. Again we define two classes of two dimensional Gegenbauer-Legendre polynomials to obtain their series formulae. Finally, we use these results in the computation of the region of convergence of arbitrary function consisting of Gegenbauer-Legendre mixed polynomials. 


2020 Mathematical Sciences Classification: 33C45; 33C47; 11B39; 33C90. 

Keywords and Phrases: Analytic and algebraic properties; Legendre and Gegenbauer polynomials; Gegenbauer-Legendre mixed polynomials; Computation of the region of convergence of any function consisting Gegenbauer-Legendre mixed polynomials. 

[Download PDF File]

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse