Search this site
Embedded Files
Vijñāna Parishad of India
  • Home
  • Vijñāna Parishad of India
    • Executive Council
    • Join Vijñāna Parishad of India
    • Life Members
    • Annual Members
    • VPI Annual Conferences
      • 26th Annual Conference - 2025
      • 25th Annual Conference - 2024
      • 24th Annual Conference - 2023
      • Sixth International Conference
      • Fifth International Conference and Golden Jubilee Celebration
      • 23rd Annual Conference - 2021
      • International Conference - 2020
      • International Conference and 22nd Annual Convention
      • 2nd International Conference
      • 21st Annual Conference
      • 20th Annual Conference
      • 19th Annual Conference
      • 18th Annual Conference
      • 17th Annual Conference
      • 16th Annual Conference
      • 15th Annual Conference
        • 15th Annual Conference Photo Gallery
    • Fellows and Awards
      • Best Paper Presentation Award To Young Scientists
    • Donors
  • Jñānābha
    • Jñānābha‎ Online Volumes
    • Volume 55 (No 2-2025)
    • Volume 55 SI (No I-2025)
    • Volume 55 (No 1-2025)
    • Volume 54 (No 2-2024)
    • Volume 54 (No 1-2024)
    • Volume 53 (No 2-2023)
    • Volume 53 (No 1-2023)
    • Volume 52 (No 2-2022)
    • Volume 52 (No 1-2022)
    • Volume 51 (No 2-2021)
    • Volume 51 (No 1-2021)
    • Volume 50 (No 2-2020)
    • Volume 50 (No 1-2020)
    • Volume 49 (No2-2019)
    • Volume 49 (No1-2019)
    • Volume 48 (No2-2018)
    • Volume 48 (No1-2018)
    • Special Issue 2018
    • Volume 47 (No2-2017)
    • Volume 47 (No1-2017)
    • Volume 46 (2016)
    • Volume 45 (2015)
    • Volume 44 (2014)
    • Volume 43 (2013)
    • Volume 42 (2012)
    • Volume 41 (2011)
    • Volume 40 (2010)
    • Volume 39 (2009)
    • Volume 38 (2008)
    • Volume 37 (2007)
    • Volume 36 (2006)
    • Volume 35 (2005)
    • Volume 34 (2004)
    • Volume 33 (2003)
    • Volume 31, 32 (2002)
    • Volume 30 (2000)
    • Volume 29 (1999)
    • Volume 28 (1998)
    • Volume 27 (1997)
    • Volume 26 (1996)
    • Volume 25 (1995)
    • Volume 24 (1994)
    • Volume 23 (1993)
    • Volume 22 (1992)
    • Volume 21 (1991)
    • Volume 20 (1990)
    • Volume 19 (1989)
    • Volume 18 (1988)
    • Volume 17 (1987)
    • Volume 16 (1986)
    • Volume 15 (1985)
    • Volume 14 (1984)
    • Volume 13 (1983)
    • Volume 12 (1982)
    • Volume 11 (1981)
    • Volume 9/10 (1980)
    • Volume 8 (1978)
    • Volume 7 (1977)
    • Volume 6 (1976)
    • Volume 5 (1975)
    • Volume 4 (1974)
    • Volume 3 (1973)
    • Volume 2 (1972)
    • Volume 1 (1971)
  • News and Events
  • Contact Us
Vijñāna Parishad of India

Jñānābha‎, Vol. 55 (2) (2025), (1-7)

DETOUR EDGE PEBBLING NUMBER IN GRAPHS


By

S. Vincylin1 and I. Gnanaselvi2

1,2Department of Mathematics, Sarah Tucker College, Tirunelveli, Tamilnadu, India - 627007.

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India - 627012.

Email: 1Corresponding author: vincylin7@gmail.com, 2selvikim@gmail.com

(Received: January 07, 2024; In format: February 16, 2024; Revised: April 25, 2024; Accepted: July 09, 2025)


DOI: https://doi.org/10.58250/jnanabha.2025.55201

Abstract

Assume G is a connected graph with distributing pebbles over its edges. An edge pebbling move on a graph G is defined to be the removal of two pebbles from one edge and one pebble will be added to an adjacent edge, while the other pebble will be discarded from the play. In this paper, we introduce the concept of detour edge pebbling number and find out the detour edge pebbling number for some standard graphs. We carry out the edge pebbling move in the concept of detour pebbling to arrive a new graph invariant called the detour edge pebbling number. The detour edge pebbling number of an edge e of a graph G is the minimum number of pebbles such that these pebbles are placed on the edges of G, we can move a pebble to e by making a sequence of pebble moves regardless of the initial configuration using the edge detour path. The detour edge pebbling number of a graph G, f* e(G), is the maximum f* e(G, e) over all the edges of G.

2020 Mathematical Sciences Classification: 05C12, 05C57, 05C38.
Keywords and Phrases: Edge pebbling move, Edge detour path, Edge detour distance, Detour edge pebbling number.


[Download PDF File]

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse