FIXED POINTS THEOREMS USING SPECIAL TYPES OF CONTRACTIONS IN MULTIPLICATIVE METRIC SPACES
By
Parmila Kumari1, Parveen Kumar2*, Rajesh Kumar3 and Satish Kumar4
1Department of Mathematics, Chhotu Ram Arya College Sonipat, Haryana, India-131001
2Department of Mathematics, Tau Devi Lal Government College for Women, Murthal Sonipat, Haryana, India-131027
3Department of Mathematics, BPSIHL, BPS Mahila Vishwavidyalaya Khanpur Kalan, Sonipat, Haryana, India-131305
4Department of Mathematics, GCW Sampla, Haryana, India-124501
Email: Kparmila778@gmail.com,parveenkarwal21@gmail.com,rkdubaldhania@gmail.com, kumargcd@gmail.com *Corresponding Author
(Received: April 20, 2024; In format: May 14, 2024; Revised: October 09, 2025; Accepted: October 10, 2025)
DOI: https://doi.org/10.58250/jnanabha.2025.55211
Abstract
In this work, we construct fixed point theorems utilizing the extendibility of the Banach iteration approach to specific special contraction mappings with changes in domains has been studied. More precisely, we study an expanding sequence of subsets of a complete multiplicative metric space such that one item of the sequence is mapped into the next member by a map such that a contraction condition is fulfilled. Additionally, multiple fixed point findings are derived for different multiplicative contraction maps with multiplicative closed graphs.
2020 Mathematical Sciences Classification: 47H10, 54H25
Keywords and Phrases: Multiplicative metric spaces, Multiplicative closed graphs, Iteration technique.