Search this site
Embedded Files
Vijñāna Parishad of India
  • Home
  • Vijñāna Parishad of India
    • Executive Council
    • Join Vijñāna Parishad of India
    • Life Members
    • Annual Members
    • VPI Annual Conferences
      • 26th Annual Conference - 2025
      • 25th Annual Conference - 2024
      • 24th Annual Conference - 2023
      • Sixth International Conference
      • Fifth International Conference and Golden Jubilee Celebration
      • 23rd Annual Conference - 2021
      • International Conference - 2020
      • International Conference and 22nd Annual Convention
      • 2nd International Conference
      • 21st Annual Conference
      • 20th Annual Conference
      • 19th Annual Conference
      • 18th Annual Conference
      • 17th Annual Conference
      • 16th Annual Conference
      • 15th Annual Conference
        • 15th Annual Conference Photo Gallery
    • Fellows and Awards
      • Best Paper Presentation Award To Young Scientists
    • Donors
  • Jñānābha
    • Jñānābha‎ Online Volumes
    • Volume 55 (No 2-2025)
    • Volume 55 SI (No I-2025)
    • Volume 55 (No 1-2025)
    • Volume 54 (No 2-2024)
    • Volume 54 (No 1-2024)
    • Volume 53 (No 2-2023)
    • Volume 53 (No 1-2023)
    • Volume 52 (No 2-2022)
    • Volume 52 (No 1-2022)
    • Volume 51 (No 2-2021)
    • Volume 51 (No 1-2021)
    • Volume 50 (No 2-2020)
    • Volume 50 (No 1-2020)
    • Volume 49 (No2-2019)
    • Volume 49 (No1-2019)
    • Volume 48 (No2-2018)
    • Volume 48 (No1-2018)
    • Special Issue 2018
    • Volume 47 (No2-2017)
    • Volume 47 (No1-2017)
    • Volume 46 (2016)
    • Volume 45 (2015)
    • Volume 44 (2014)
    • Volume 43 (2013)
    • Volume 42 (2012)
    • Volume 41 (2011)
    • Volume 40 (2010)
    • Volume 39 (2009)
    • Volume 38 (2008)
    • Volume 37 (2007)
    • Volume 36 (2006)
    • Volume 35 (2005)
    • Volume 34 (2004)
    • Volume 33 (2003)
    • Volume 31, 32 (2002)
    • Volume 30 (2000)
    • Volume 29 (1999)
    • Volume 28 (1998)
    • Volume 27 (1997)
    • Volume 26 (1996)
    • Volume 25 (1995)
    • Volume 24 (1994)
    • Volume 23 (1993)
    • Volume 22 (1992)
    • Volume 21 (1991)
    • Volume 20 (1990)
    • Volume 19 (1989)
    • Volume 18 (1988)
    • Volume 17 (1987)
    • Volume 16 (1986)
    • Volume 15 (1985)
    • Volume 14 (1984)
    • Volume 13 (1983)
    • Volume 12 (1982)
    • Volume 11 (1981)
    • Volume 9/10 (1980)
    • Volume 8 (1978)
    • Volume 7 (1977)
    • Volume 6 (1976)
    • Volume 5 (1975)
    • Volume 4 (1974)
    • Volume 3 (1973)
    • Volume 2 (1972)
    • Volume 1 (1971)
  • News and Events
  • Contact Us
Vijñāna Parishad of India

Jñānābha‎, Vol. 55 (2) (2025), (58-66)

THE GRÜSS TYPE FRACTIONAL INTEGRAL INEQUALITIES OF MULTIVARIATE MITTAG-LEFFLER FUNCTION


By

Meena Kumari Gurjar1 , Preeti Chhattry2 , Anil Kumar Vishnoi3 and Rajneesh Kumar4

1,3Department of Mathematics and Statistics, J.N.V. University, Jodhpur, Rajasthan, India-342001. 

2Govt. Girls High School Pathariya, Mungeli, Chattisgarh, India-495113. 

3Department of Mathematics, Kurukshetra University, Kurukshetra, India-136119. 

Email: meenanetj@gmail.com, preetichhattry@gmail.com, anilvishnoirahar@gmail.com, rajneesh kuk@rediffmail.com 

(Received: February 04, 2025; In format: February 12, 2025; Revised: September 21, 2025; Accepted: October 01, 2025) 


DOI: https://doi.org/10.58250/jnanabha.2025.55208

Abstract

Integral inequalities are becoming more popular because they are useful in many areas. The researchers have studied integral inequalities using various methods. In this paper, we want to create new integral inequalities such as Gr¨uss type inequalities, and other similar ones, for the fractional integral operator that uses the multivariate Mittag-Leffler function. We look at how the Riemann-Liouville integral, the Prabhakar integral, and the generalized fractional integral are related to make specific conclusions. We support our findings by giving additional details.

2020 Mathematical Sciences Classification: 26A33, 26D10.
Keywords and Phrases: Mittag-Leffler function, inequalities, extended fractional integrals.

[Download PDF File]

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse