Search this site
Embedded Files
Vijñāna Parishad of India
  • Home
  • Vijñāna Parishad of India
    • Executive Council
    • Join Vijñāna Parishad of India
    • Life Members
    • Annual Members
    • VPI Annual Conferences
      • 26th Annual Conference - 2025
      • 25th Annual Conference - 2024
      • 24th Annual Conference - 2023
      • Sixth International Conference
      • Fifth International Conference and Golden Jubilee Celebration
      • 23rd Annual Conference - 2021
      • International Conference - 2020
      • International Conference and 22nd Annual Convention
      • 2nd International Conference
      • 21st Annual Conference
      • 20th Annual Conference
      • 19th Annual Conference
      • 18th Annual Conference
      • 17th Annual Conference
      • 16th Annual Conference
      • 15th Annual Conference
        • 15th Annual Conference Photo Gallery
    • Fellows and Awards
      • Best Paper Presentation Award To Young Scientists
    • Donors
  • Jñānābha
    • Jñānābha‎ Online Volumes
    • Volume 55 SI (No I-2025)
    • Volume 55 (No 1-2025)
    • Volume 54 (No 2-2024)
    • Volume 54 (No 1-2024)
    • Volume 53 (No 2-2023)
    • Volume 53 (No 1-2023)
    • Volume 52 (No 2-2022)
    • Volume 52 (No 1-2022)
    • Volume 51 (No 2-2021)
    • Volume 51 (No 1-2021)
    • Volume 50 (No 2-2020)
    • Volume 50 (No 1-2020)
    • Volume 49 (No2-2019)
    • Volume 49 (No1-2019)
    • Volume 48 (No2-2018)
    • Volume 48 (No1-2018)
    • Special Issue 2018
    • Volume 47 (No2-2017)
    • Volume 47 (No1-2017)
    • Volume 46 (2016)
    • Volume 45 (2015)
    • Volume 44 (2014)
    • Volume 43 (2013)
    • Volume 42 (2012)
    • Volume 41 (2011)
    • Volume 40 (2010)
    • Volume 39 (2009)
    • Volume 38 (2008)
    • Volume 37 (2007)
    • Volume 36 (2006)
    • Volume 35 (2005)
    • Volume 34 (2004)
    • Volume 33 (2003)
    • Volume 31, 32 (2002)
    • Volume 30 (2000)
    • Volume 29 (1999)
    • Volume 28 (1998)
    • Volume 27 (1997)
    • Volume 26 (1996)
    • Volume 25 (1995)
    • Volume 24 (1994)
    • Volume 23 (1993)
    • Volume 22 (1992)
    • Volume 21 (1991)
    • Volume 20 (1990)
    • Volume 19 (1989)
    • Volume 18 (1988)
    • Volume 17 (1987)
    • Volume 16 (1986)
    • Volume 15 (1985)
    • Volume 14 (1984)
    • Volume 13 (1983)
    • Volume 12 (1982)
    • Volume 11 (1981)
    • Volume 9/10 (1980)
    • Volume 8 (1978)
    • Volume 7 (1977)
    • Volume 6 (1976)
    • Volume 5 (1975)
    • Volume 4 (1974)
    • Volume 3 (1973)
    • Volume 2 (1972)
    • Volume 1 (1971)
  • News and Events
  • Contact Us
Vijñāna Parishad of India

Jñānābha‎, Vol. 55 SI (I) (2025), (23-28)

ON EFFICIENT DISCRETE LOGARITHM COMPUTATION ON ELLIPTIC CURVES


By

1Shalini Gupta, 2Kritika Gupta, 3Gajendra Pratap Singh and 4Kamalendra Kumar

1,2Department of Mathematics & Statistics, Himachal Pradesh University, Shimla, India-171005

3School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India-110067

4Department of Basic Science, Shri Ram Murti Smarak, College of Engineering and Technology, Bareilly, India-243202

Email: shalini.garga1970@gmail.com, kritika993@gmail.com, gajendra@gmail.jnu.ac.in, kamlendra.14kumar@gmail.com

(Received: October 10, 2023; In format: December 05, 2024; Revised: May 09, 2025; Accepted: July 14, 2025)


DOI: https://doi.org/10.58250/jnanabha_SI.2025.55103


Abstract

The proposed algorithm for computing discrete logarithms on elliptic curves involves choosing a prime with a large prime factor, an elliptic curve over the field of that prime and a random point of a certain order on the curve. The algorithm then chooses a set of primes optimized to minimize the size of a linear system and computes relations between the primes and random points on the curve using the Pollard rho algorithm. It then uses the Furer-Gathen algorithm to compute a summation polynomial for these relations and solves the linear system for the coefficients of the unknown logarithms of the prime factors of the curve's order using the conjugate gradient method and combines these logarithms to compute the discrete logarithm of any point on the curve.


2020 Mathematical Sciences Classification: 12E20, 94A60

Keywords and Phrases: Elliptic Curve; Discrete Logarithm Problem (DLP); Prime Field; Point Counting; Summation Polynoimal.

[Download PDF File]

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse